Objective: We sought to establish core knowledge topics and skills that are important to teach pediatric residents using simulation-based medical education (SBME).
Methods: We conducted a modified Delphi process with experts in pediatric SBME. Content items were adapted from the American Board of Pediatrics certifying exam content and curricular components from pediatric entrustable professional activities (EPAs).
We present a systematic study of electron-correlation and relativistic effects in diatomic molecular species of the heaviest halogen astatine (At) within relativistic single- and multireference coupled-cluster approaches and relativistic density functional theory. We establish revised reference ab initio data for the ground states of At, HAt, AtAu, and AtO using a highly accurate relativistic effective core potential model and in-house basis sets developed for accurate modeling of molecules with large spin-orbit effects. Spin-dependent relativistic effects on chemical bonding in the ground state are comparable to the binding energy or even exceed it in At.
View Article and Find Full Text PDFAngiotensinogen fine-tunes the tightly controlled activity of the renin-angiotensin system by modulating the release of angiotensin peptides that control blood pressure. One mechanism by which this modulation is achieved is via angiotensinogen's Cys18-Cys138 disulfide bond that acts as a redox switch. Molecular dynamics simulations of each redox state of angiotensinogen reveal subtle dynamic differences between the reduced and oxidised forms, particularly at the N-terminus.
View Article and Find Full Text PDF