Publications by authors named "R S Buller"

The ability to predict and design protein structures has led to numerous applications in medicine, diagnostics and sustainable chemical manufacture. In addition, the wealth of predicted protein structures has advanced our understanding of how life's molecules function and interact. Honouring the work that has fundamentally changed the way scientists research and engineer proteins, the Nobel Prize in Chemistry in 2024 was awarded to David Baker for computational protein design and jointly to Demis Hassabis and John Jumper, who developed AlphaFold for machine-learning-based protein structure prediction.

View Article and Find Full Text PDF

Darwinian evolution has given rise to all the enzymes that enable life on Earth. Mimicking natural selection, scientists have learned to tailor these biocatalysts through recursive cycles of mutation, selection and amplification, often relying on screening large protein libraries to productively modulate the complex interplay between protein structure, dynamics and function. Here we show that by removing destabilizing mutations at the library design stage and taking advantage of recent advances in gene synthesis, we can accelerate the evolution of a computationally designed enzyme.

View Article and Find Full Text PDF
Article Synopsis
  • Oxygenation of hydrocarbons by Rieske oxygenases is crucial for biodegrading environmental contaminants, but how microorganisms adapt to new substrates is not fully understood.
  • Researchers hypothesized that the production of reactive oxygen species (ROS) during O uncoupling could drive bacteria to evolve more efficient oxygenation capabilities.
  • Their study of enzyme variants showed improved oxygenation efficiency with reduced ROS production, suggesting that structural changes in the enzymes enhanced substrate binding and overall performance.
View Article and Find Full Text PDF

With the aim of reintroducing wheat grains naturally contaminated with mycotoxins into the food value chain, a decontamination strategy was developed in this study. For this purpose, in a first step, the whole wheat kernels were pre-treated using cold needle perforation. The pore size was evaluated by scanning electron microscopy and the accessibility of enzymes and microorganisms determined using fluorescent markers in the size range of enzymes (5 nm) and microorganisms (10 μm), and fluorescent microscopy.

View Article and Find Full Text PDF

Excelzyme, an enzyme engineering platform located at the Zurich University of Applied Sciences, is dedicated to accelerating the development of tailored biocatalysts for large-scale industrial applications. Leveraging automation and advanced computational techniques, including machine learning, efficient biocatalysts can be generated in short timeframes. Toward this goal, Excelzyme systematically selects suitable protein scaffolds as the foundation for constructing complex enzyme libraries, thereby enhancing sequence and structural biocatalyst diversity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionboaucj8o36tghstp4dad5b6d7j10mfla): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once