Publications by authors named "R S Averback"

We consider the stability of precipitates formed at grain boundaries (GBs) by radiation-induced segregation in dilute alloys subjected to irradiation. The effects of grain size and misorientation of symmetric-tilt GBs are quantified using phase field modeling. A novel regime is identified where, at long times, GBs are decorated by precipitate patterns that resist coarsening.

View Article and Find Full Text PDF

The microscopic wear behavior of copper-silver multilayer samples was studied by performing sliding wear tests using a tribo-indenter. Multilayers with an average composition of CuAg and Ag layer thicknesses ranging from 2 to 20 nm were grown by magnetron sputtering. For reference, a homogeneous CuAg solid solution film was similarly grown.

View Article and Find Full Text PDF

Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations.

View Article and Find Full Text PDF

Direct observations on nanopillars composed of molybdenum disulfide (MoS2) and chromium-doped MoS2 and their response to compressive stress have been made. Time-resolved transmission electron microscopy (TEM) during compression of the submicrometer diameter pillars of MoS2- and Cr-doped MoS2 (Cr: 0, 10, and 50 at %) allow the deformation process of the material to be observed and can be directly correlated with mechanical response to applied load. The addition of chromium to the MoS2 changed the failure mode from plastic deformation to catastrophic brittle fracture, an effect that was more pronounced as chromium content increased.

View Article and Find Full Text PDF

A new mechanism of irradiation enhanced creep is proposed for nanocrystalline materials. It derives from local relaxations within the grain boundaries as they absorb point defects produced by irradiation. The process is studied by inserting point defects into the grain boundaries and following the materials response by molecular dynamics.

View Article and Find Full Text PDF