Copper nanoclusters (Cu NCs), synthesized by a one-pot synthesis method, were theoretically shown to exhibit a dipole moment and cause work function modification on a surface as observed from Kelvin probe measurement. Here, Cu NCs were used as an interfacial modifier in organic solar cells (OSCs). The effective engineering of the electron transporting layer/active layer interface using Cu NCs resulted in improved photovoltaic performance in fullerene and non-fullerene based OSCs.
View Article and Find Full Text PDFNanoscale Horiz
September 2024
Ultra-small nanoparticles, including quantum dots, gold nanoclusters (AuNCs) and carbon dots (CDs), have emerged as a promising class of fluorescent material because of their molecular-like properties and widespread applications in sensing and imaging. However, the fluorescence properties of ultra-small gold nanoparticles (, AuNCs) and CDs are more complicated and well distinguished from conventional quantum dots or organic dye molecules. At this frontier, we highlight recent developments in the fundamental understanding of the fluorescence emission mechanism of these ultra-small nanoparticles.
View Article and Find Full Text PDFUnlabelled: Myocardial infarction (MI) remains the most common cause of cardiac failure and continuous increasing rate of morbidity and mortality. We aimed to investigate the association of estrogen receptor-α (ESR1) gene polymorphism c454-397T>C with serum estradiol levels and dyslipidemia in 220 patients with MI in the age range of 35-70 years of both the genders. Genotyping study was performed through PCR-RFLP method using PvuII restriction enzyme.
View Article and Find Full Text PDFCopper nanoparticles (Cu NPs) have gained immense popularity in catalysis by virtue of their impressive properties and earth abundance. Herein, we incorporated small-sized copper nanoparticles into the amine-functionalized NU-1000 MOF and used this composite material as an effective catalyst for electrocatalytic Hydrogen Evolution Reaction (HER) studies.
View Article and Find Full Text PDFNU-1000, being a hydrothermally stable metal-organic framework (MOF), with structural robustness is viable for functionalization with various entities. A postsynthetic modification strategy called solvent-assisted ligand incorporation (SALI) is chosen for functionalizing NU-1000 with thiol moieties using 2-mercaptobenzoic acid. In accordance with soft acid-soft base interactions, the thiol groups on NU-1000, as a scaffold, can immobilize the gold nanoparticles without much aggregation.
View Article and Find Full Text PDF