In root nodule symbioses (RNS) between nitrogen (N)-fixing bacteria and plants, bacterial symbionts cycle between nodule-inhabiting and soil-inhabiting niches that exert differential selection pressures on bacterial traits. Little is known about how the resulting evolutionary tension between host plants and symbiotic bacteria structures naturally occurring bacterial assemblages in soils. We used DNA cloning to examine soil-dwelling assemblages of the actinorhizal symbiont in sites with long-term stable assemblages in ssp.
View Article and Find Full Text PDFThiophosphate-based all-solid-state batteries (ASSBs) are considered the most promising candidate for the next generation of energy storage systems. However, thiophosphate-based ASSBs suffer from fast capacity fading with nickel-rich cathode materials. In many reports, this capacity fading is attributed to an increase of the charge transfer resistance of the composite cathode caused by interface degradation and/or chemo-mechanical failure.
View Article and Find Full Text PDFSolid-state batteries (SSBs) with high-voltage cathode active materials (CAMs) such as LiNi Co Mn O (NCM) and poly(ethylene oxide) (PEO) suffer from "noisy voltage" related cell failure. Moreover, reports on their long-term cycling performance with high-voltage CAMs are not consistent. In this work, we verified that the penetration of lithium dendrites through the solid polymer electrolyte (SPE) indeed causes such "noisy voltage cell failure".
View Article and Find Full Text PDFLithium argyrodite-type electrolytes are regarded as promising electrolytes due to their high ionic conductivity and good processability. Chemical modifications to increase ionic conductivity have already been demonstrated, but the influence of these modifications on interfacial stability remains so far unknown. In this work, we study Li PS Cl and Li PS Cl to investigate the influence of halogenation on the electrochemical decomposition of the solid electrolyte and the chemical degradation mechanism at the cathode interface in depth.
View Article and Find Full Text PDFWe use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO ), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO , warming, and decreased precipitation combined because higher water-use efficiency with elevated CO and higher fertility with warming compensate for responses to drought. Response to elevated CO , warming, and increased precipitation combined is additive.
View Article and Find Full Text PDF