Publications by authors named "R Rubini"

Article Synopsis
  • * A case study of a 4-month-old kitten revealed severe health issues, including oral burns and lameness, after exposure to a 5% BAC-containing mold remover, necessitating hospitalization and supportive care.
  • * The findings underscore the dangers of BAC for cats, emphasizing the need for increased awareness of its potential hazards in both home and professional environments, especially since this is one of the first reported cases in Italy.
View Article and Find Full Text PDF

In the present paper, a comparison is conducted between three classical shell theories as applied to the linear vibrations of single-walled carbon nanotubes (SWCNTs); specifically, the evaluation of the natural frequencies is conducted via Donnell, Sanders, and Flügge shell theories. The actual discrete SWCNT is modelled by means of a continuous homogeneous cylindrical shell considering equivalent thickness and surface density. In order to take into account the intrinsic chirality of carbon nanotubes (CNTs), a molecular based anisotropic elastic shell model is considered.

View Article and Find Full Text PDF

In vivo selections are powerful tools for the directed evolution of enzymes. However, the need to link enzymatic activity to cellular survival makes selections for enzymes that do not fulfill a metabolic function challenging. Here, we present an in vivo selection strategy that leverages recoded organisms addicted to non-canonical amino acids (ncAAs) to evolve biocatalysts that can provide these building blocks from synthetic precursors.

View Article and Find Full Text PDF

Biocontainment is an essential feature when deploying genetically modified organisms (GMOs) in open system applications, as variants escaping their intended operating environments could negatively impact ecosystems and human health. To avoid breaches resulting from metabolic cross-feeding, horizontal gene transfer, and/or genetic mutations, synthetic auxotrophs have been engineered to become dependent on exogenously supplied xenobiotics, such as noncanonical amino acids (ncAAs). The incorporation of these abiological building blocks into essential proteins constitutes a first step toward constructing xenobiological barriers between GMOs and their environments.

View Article and Find Full Text PDF

Interfacing biocompatible, small-molecule catalysis with cellular metabolism promises a straightforward introduction of new function into organisms without the need for genetic manipulation. However, identifying and optimizing synthetic catalysts that perform new-to-nature transformations under conditions that support life is a cumbersome task. To enable the rapid discovery and fine-tuning of biocompatible catalysts, we describe a 96-well screening platform that couples the activity of synthetic catalysts to yield non-canonical amino acids from appropriate precursors with the subsequent incorporation of these nonstandard building blocks into GFP (quantifiable readout).

View Article and Find Full Text PDF