Publications by authors named "R Rossner"

The antibiotic diaminodiphenyl sulfone (DDS) is used in combination with other antibiotics as a first line treatment for leprosy. DDS has been previously reported to extend lifespan in through inhibition of pyruvate kinase and decreased mitochondrial function. Here we report an alternative mechanism of action by which DDS promotes longevity in by reducing folate production by the microbiome.

View Article and Find Full Text PDF

Flavin-containing monooxygenases (FMOs) are primarily studied as xenobiotic metabolizing enzymes with a prominent role in drug metabolism. In contrast, endogenous functions and substrates of FMOs are less well understood. A growing body of recent evidence, however, implicates FMOs in aging, several diseases, and metabolic pathways.

View Article and Find Full Text PDF

Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP) enzyme transaldolase activates the mitochondrial unfolded protein response (UPRmt) and extends lifespan.

View Article and Find Full Text PDF

The hypoxic response is a well-studied and highly conserved biological response to low oxygen availability. First described more than 20 y ago, the traditional model for this response is that declining oxygen levels lead to stabilization of hypoxia-inducible transcription factors (HIFs), which then bind to hypoxia responsive elements (HREs) in target genes to mediate the transcriptional changes collectively known as the hypoxic response.(1,2) Recent work in C.

View Article and Find Full Text PDF

Stabilization of the hypoxia-inducible factor 1 (HIF-1) increases life span and health span in nematodes through an unknown mechanism. We report that neuronal stabilization of HIF-1 mediates these effects in Caenorhabditis elegans through a cell nonautonomous signal to the intestine, which results in activation of the xenobiotic detoxification enzyme flavin-containing monooxygenase-2 (FMO-2). This prolongevity signal requires the serotonin biosynthetic enzyme TPH-1 in neurons and the serotonin receptor SER-7 in the intestine.

View Article and Find Full Text PDF