In recent years, affinity-based technologies have become important tools for serum profiling to uncover protein expression patterns linked to disease state or therapeutic effects. In this study, we describe a path towards the production of an antibody microarray to allow protein profiling of biotinylated human serum samples with reproducible sensitivity in the picomolar range. With the availability of growing numbers of affinity reagents, protein profiles are to be validated in efficient manners and we describe a cross-platform strategy based on data concordance with a suspension bead array to interrogate the identical set of antibodies with the same cohort of serum samples.
View Article and Find Full Text PDFBackground: The Central Dogma of biology holds, in famously simplified terms, that DNA makes RNA makes proteins, but there is considerable uncertainty regarding the general, genome-wide correlation between levels of RNA and corresponding proteins. Therefore, to assess degrees of this correlation we compared the RNA profiles (determined using both cDNA- and oligo-based microarrays) and protein profiles (determined immunohistochemically in tissue microarrays) of 1066 gene products in 23 human cell lines.
Results: A high mean correlation coefficient (0.
Antibody microarrays offer a powerful tool to screen for target proteins in complex samples. Here, we describe an approach for systematic analysis of serum, based on antibodies and using color-coded beads for the creation of antibody arrays in suspension. This method, adapted from planar antibody arrays, offers a fast, flexible, and multiplexed procedure to screen larger numbers of serum samples, and no purification steps are required to remove excess labeling substance.
View Article and Find Full Text PDFPigment Cell Melanoma Res
April 2008
Vitiligo is a complex, polygenic disorder characterized by patchy loss of skin pigmentation due to abnormal melanocyte function. Both genetic and environmental etiological factors have been proposed for vitiligo and lack of molecular markers renders difficulties to predict development and progression of the disease. Identification of dysregulated genes has the potential to unravel biological pathways involved in vitiligo pathogenesis, facilitating discovery of potential biomarkers and novel therapeutic approaches.
View Article and Find Full Text PDFStat Appl Genet Mol Biol
May 2006
In the exploding field of gene expression techniques such as DNA microarrays, there are still few general probabilistic methods for analysis of variance. Linear models and ANOVA are heavily used tools in many other disciplines of scientific research. The usual F-statistic is unsatisfactory for microarray data, which explore many thousand genes in parallel, with few replicates.
View Article and Find Full Text PDF