Background: On activation, mast cells rapidly release preformed inflammatory mediators from large cytoplasmic granules via regulated exocytosis. This acute degranulation is followed by a late activation phase involving synthesis and secretion of cytokines, growth factors, and other inflammatory molecules via the constitutive pathway that remains ill defined.
Objective: We investigated the role for an insulin-responsive vesicle-like endosomal compartment, marked by insulin-regulated aminopeptidase (IRAP), in the secretion of TNF-α and IL-6 in mast cells and macrophages.
Mastocytosis is a heterogeneous disease characterized by an abnormal accumulation of mast cells (MCs) in 1 or several organs. Although a somatic KIT D816V mutation is detected in ∼85% of patients, attempts to demonstrate its oncogenic effect alone have repeatedly failed, suggesting that additional pathways are involved in MC transformation. From 3 children presenting with both Greig cephalopolysyndactyly syndrome (GCPS, Mendelian Inheritance in Man [175700]) and congenital mastocytosis, we demonstrated the involvement of the hedgehog (Hh) pathway in mastocytosis.
View Article and Find Full Text PDFTryptophan as the precursor of several active compounds, including kynurenine and serotonin, is critical for numerous important metabolic functions. Enhanced tryptophan metabolism toward the kynurenine pathway has been associated with myelodysplastic syndromes (MDSs), which are preleukemic clonal diseases characterized by dysplastic bone marrow and cytopenias. Here, we reveal a fundamental role for tryptophan metabolized along the serotonin pathway in normal erythropoiesis and in the physiopathology of MDS-related anemia.
View Article and Find Full Text PDFDespite increasing evidence for a protective role of invariant (i) NKT cells in the control of graft-versus-host disease (GVHD), the mechanisms underpinning regulation of the allogeneic immune response in humans are not known. In this study, we evaluated the distinct effects of human expanded and flow-sorted human CD4 and CD4 iNKT subsets on human T cell activation in a pre-clinical humanized NSG mouse model of xenogeneic GVHD. We demonstrate that human CD4 but not CD4 iNKT cells could control xenogeneic GVHD, allowing significantly prolonged overall survival and reduced pathological GVHD scores without impairing human T cell engraftment.
View Article and Find Full Text PDF