This study aimed to investigate the intrinsic efficiency of renewable alcohols, applied under autocatalytic conditions, for removing lignin from aspen and hot-water-extracted aspen while substantially preserving the lignin structure so as to facilitate various valorization strategies. Ethylene glycol (EG), propylene glycol (PG), 1,4-butanediol (BDO), ethanol (EtOH), and tetrahydrofurfuryl alcohol (THFA) were evaluated based on their lignin solubilization ability, expressed as the relative energy difference (RED) following the principles of the Hansen solubility theory. The findings indicate that alcohols with a higher lignin solubilization potential lead to increased delignification, almost 90%, and produce a lignin with a higher content of β-O-4 bonds, up to 68% of those found in aspen milled wood lignin, thereby indicating their potential for valorization through depolymerization.
View Article and Find Full Text PDFBackground: Identifying spatial variation in TB burden can help national TB programs effectively allocate resources to reach and treat all people with TB. However, data limitations pose challenges for subnational TB burden estimation.
Methods: We developed a small-area modeling approach using geo-positioned prevalence survey data, case notifications, and geospatial covariates to simultaneously estimate spatial variation in TB incidence and case notification completeness across districts in Uganda from 2016-2019.
Understanding how emerging infectious diseases spread within and between countries is essential to contain future pandemics. Spread to new areas requires connectivity between one or more sources and a suitable local environment, but how these two factors interact at different stages of disease emergence remains largely unknown. Further, no analytical framework exists to examine their roles.
View Article and Find Full Text PDF