Fatigue is prevalent in immune-mediated inflammatory and neurodegenerative diseases, yet its assessment relies largely on patient-reported outcomes, which capture perception but not fluctuations over time. Wearable sensors, like inertial measurement units (IMUs), offer a way to monitor daily activities and evaluate functional capacity. This study investigates the relationship between sit-to-stand and stand-to-sit transitions and self-reported physical and mental fatigue in participants with Parkinson's, Huntington's, rheumatoid arthritis, systemic lupus erythematosus, primary Sjögren's syndrome and inflammatory bowel disease.
View Article and Find Full Text PDFThe prevalent belief that individuals with Huntington's disease exhibit selfish behaviour, disregarding the thoughts, feelings and actions of others, has been challenged by patient organizations and clinical experts. To further investigate this issue and study whether participants with Huntington's disease can pay attention to others, a joint memory task was carried out in patients with Huntington's disease with and without a partner. This study involved 69 participants at an early stage of Huntington's disease and 56 healthy controls from the UK, France and Germany, who participated in the international Repair-HD multicentre study (NCT03119246).
View Article and Find Full Text PDFBackground: Many individuals with neurodegenerative (NDD) and immune-mediated inflammatory disorders (IMID) experience debilitating fatigue. Currently, assessments of fatigue rely on patient reported outcomes (PROs), which are subjective and prone to recall biases. Wearable devices, however, provide objective and reliable estimates of gait, an essential component of health, and may present objective evidence of fatigue.
View Article and Find Full Text PDFCitric acid cycle deficiencies are extremely rare due to their central role in energy metabolism. The gene encodes the mitochondrial isoform of aconitase (aconitase 2), the second enzyme of the citric acid cycle. Approximately 100 patients with aconitase 2 deficiency have been reported with a variety of symptoms, including intellectual disability, hypotonia, optic nerve atrophy, cortical atrophy, cerebellar atrophy, and seizures.
View Article and Find Full Text PDF