Contextual embeddings, derived from deep language models (DLMs), provide a continuous vectorial representation of language. This embedding space differs fundamentally from the symbolic representations posited by traditional psycholinguistics. We hypothesize that language areas in the human brain, similar to DLMs, rely on a continuous embedding space to represent language.
View Article and Find Full Text PDFWord embedding representations have been shown to be effective in predicting human neural responses to lingual stimuli. While these representations are sensitive to the textual context, they lack the extratextual sources of context such as prior knowledge, thoughts, and beliefs, all of which constitute the listener's perspective. In this study, we propose conceptualizing the listeners' perspective as a source that induces changes in the embedding space.
View Article and Find Full Text PDF