Analysis of noncovalent interactions formed by the surface of a 2D silica bilayer and atrane molecules, as precursors of functional layers immobilized on a surface of silicatene, was performed. For this purpose, the systems of substituted silatranes and germatranes adsorbed on silicatene surfaces with different amounts of hydroxyl groups (0, 2, 4, and 30 per cell) were simulated by using quantum chemical modeling with periodic boundary conditions and full-electron basis sets. The observation results for interaction energy changes in the systems "atrane molecule-silicatene surface" with increasing silanol number of the silicatene surface can be used to predict the optimal degree of silicatene hydroxylation in order to control the effective progress of atrane deprotection on activated 2D silica materials.
View Article and Find Full Text PDFObjectives: Existing applications of non-invasive brain stimulation in the modulation of balance ability are focused on the primary motor cortex (M1). It is conceivable that other brain and spinal cord areas may be comparable or more promising targets in this regard. This study compares transcranial direct current stimulation (tDCS) over (i) the M1, (ii) the cerebellum, and (iii) trans-spinal direct current stimulation (tsDCS) in the modulation of balance ability.
View Article and Find Full Text PDFMembranes are an important barrier used in recycled water treatment plants for pathogen removal. Understanding performance over operational life is important to inform membrane replacement. In this study, full scale virus challenge testing was conducted on newly commissioned membranes to validate virus log removal values for accreditation.
View Article and Find Full Text PDFUltrafiltration is an effective barrier to waterborne pathogens including viruses. Challenge testing is commonly used to test the inherent reliability of such systems. Performance validation seeks to demonstrate the adequate reliability of the treatment system.
View Article and Find Full Text PDFThe objective of the Parafield Aquifer Storage Transfer and Recovery research project in South Australia is to determine whether stormwater from an urban catchment that is treated in a constructed wetland and stored in an initially brackish aquifer before recovery can meet potable water standards. The water produced by the stormwater harvesting system, which included a constructed wetland, was found to be near potable quality. Parameters exceeding the drinking water guidelines before recharge included small numbers of fecal indicator bacteria and elevated iron concentrations and associated color.
View Article and Find Full Text PDF