Int J Mol Sci
July 2024
lncRNAs are noncoding transcripts with tissue and cancer specificity. Particularly, in breast cancer, lncRNAs exhibit subtype-specific expression; they are particularly upregulated in luminal tumors. However, no gene signature-based laboratory tests have been developed for luminal breast cancer identification or the differential diagnosis of luminal tumors, since no luminal A- or B-specific genes have been identified.
View Article and Find Full Text PDFIt has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple in vitro biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: a. human pituitary FSH18/21 (hypo-glycosylated); b.
View Article and Find Full Text PDFThe most common genetic drivers of pituitary neuroendocrine tumors (PitNETs) lie within mutational hotspots, which are genomic regions where variants tend to cluster. Some of these hotspot defects are unique to PitNETs, while others are associated with additional neoplasms. Hotspot variants in and are the most common genetic causes of acromegaly and Cushing's disease, respectively.
View Article and Find Full Text PDFCushing's disease (CD) is a life-threatening condition with a challenging diagnostic process and scarce treatment options. CD is caused by usually benign adrenocorticotrophic hormone (ACTH)-secreting pituitary neuroendocrine tumors (PitNETs), known as corticotropinomas. These tumors are predominantly of sporadic origin, and usually derive from the monoclonal expansion of a mutated cell.
View Article and Find Full Text PDFbioRxiv
October 2023
It has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: human pituitary FSH and equine FSH (FSH) (hypo-glycosylated), and human FSH and chinese-hamster ovary cell-derived human recombinant FSH (FSH) (fully-glycosylated). Total RNA from triplicate incubations was prepared from FSH glycoform-exposed cultured granulosa cells obtained from DES-pretreated immature female rats, and RNA libraries were sequenced in a HighSeq 2500 sequencer (2 × 125 bp paired-end format, 10-15 × 10 reads/sample).
View Article and Find Full Text PDF