Endemic countries with lymphatic filariasis are striving towards the Global Program to Eliminate Lymphatic Filariasis (GPELF) by 2020. Efficient and cost-effective diagnostic tools to assess active filarial infection are critical to eradicate lymphatic filariasis. Detection of circulating filarial antigens in sera is one of the precise methods to identify this infection.
View Article and Find Full Text PDFLymphatic filariasis is a debilitating diseases caused by filarial parasitic nematodes. The infection may be acquired in childhood but the symptoms become apparent only in later life. To evaluate the success of any intervention, sensitive diagnostics were used to identify infection among endemic normals that are likely to develop microfilaremia in due course of time.
View Article and Find Full Text PDFGlobal programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR).
View Article and Find Full Text PDFBackground: Lymphatic filariasis is a neglected tropical disease leading to profound disfiguring causing socio economic burden in the tropics. Current diagnosis strategies available during field surveys and epidemics are based on traditional microscopic detections and a few antigen/antibody assays. We have compared different sampling methodologies and standardized the highly sensitive and reliable rWbSXP-1 antigen detection assay to our new sampling methodology.
View Article and Find Full Text PDFInorg Chem
July 2014
A new benzoyl hydrazone based chemosensor R is synthesized by Schiff base condensation of 2,6-diformyl-4-methylphenol and phenyl carbohydrazide and acts as a highly selective fluorescence sensor for Cu(2+) and Zn(2+) ions in aqueous media. The reaction of R with CuCl2 or ZnCl2 forms the corresponding dimeric dicopper(II) [Cu2(R)(CH3O)(NO3)]2(CH3O)2 (R-Cu(2+)) and dizinc(II) [Zn2(R)2](NO3)2 (R-Zn(2+)) complexes, which are characterized, as R, by conventional techniques including single-crystal X-ray analysis. Electronic absorption and fluorescence titration studies of R with different metal cations in a CH3CN/0.
View Article and Find Full Text PDF