In primary cultures of rat pituitary cells and in a pituitary sommatolactotroph cell line (GH4C1), endogenous core-clock- as well as hormone-genes such as prolactin displayed a rhythmic expression pattern, fitted by a sinusoidal equation in which the period value was close to the circadian one. This is consistent with the presence of a functional circadian oscillator in pituitary cells whose importance was ascertained in GH4C1 cell lines stably expressing a dominant negative mutant of BMAL1. In these cells, both endogenous core-clock- and prolactin-genes no more displayed a circadian pattern.
View Article and Find Full Text PDFThe treatment of growth hormone (GH)- and prolactin (PRL)-secreting tumors resistant to current therapeutic molecules (somatostatin and dopamine analogues) remains challenging. To target these tumors specifically, we chose to inactivate a gene coding for a crucial factor in cell proliferation and hormonal regulation, specifically expressed in pituitary, by using a dominant-negative form of this gene involved in human pituitary deficiencies: transcription factor Pit-1 (POU1F1) mutated on arginine 271 to tryptophan (R271W). After lentiviral transfer, the effect of R271W was studied in vitro on human tumoral somatotroph and lactotroph cells and on the murine mammosomatotroph cell line GH4C1 and in vivo on GH4C1 subcutaneous xenografts in nude mice.
View Article and Find Full Text PDFIn pituitary cells, activation of the cAMP pathway by specific G protein-coupled receptors controls differentiative functions and proliferation. Constitutively active forms of the alpha subunit of the heterotrimeric G(s) protein resulting from mutations at codon 201 or 227 (gsp oncogene) were first identified in 30-40% of human GH-secreting pituitary adenomas. This rate of occurrence suggests that the gsp oncogene is not responsible for initiating the majority of these tumors.
View Article and Find Full Text PDFIn pituitary cells, prolactin (PRL) synthesis and release are controlled by multiple transduction pathways. In the GH4C1 somatolactotroph cell line, we previously reported that MAPK ERK-1/2 are a point of convergence between the pathways involved in the PRL gene regulation. In the present study, we focused on the involvement of the phosphoinositide 3-kinase (PI3K)/Akt pathway in the MAPK ERK-1/2 regulation and PRL secretion in pituitary cells.
View Article and Find Full Text PDFDespite important advances in human therapeutics, no specific treatment for both non-functioning gonadotroph and resistant somatotroph adenomas is available. Gene transfer by viral vectors can be considered as a promising way to achieve a specific and efficient treatment. Here we show the possibility of efficient gene transfer in human pituitary adenoma cells in vitro using a human immunodeficiency virus (HIV)-type 1-derived vector.
View Article and Find Full Text PDF