Eur J Pharm Sci
September 2024
Background: Using accurate, sensitive, reproducible and efficient in vivo cutaneous pharmacokinetics (PK)-based bioequivalence (BE) approaches can promote the development of topical generic drug products. A clinical dermal open flow microperfusion (dOFM) study has previously demonstrated the BE of topical drug products containing a hydrophilic drug. However, the utility of dOFM to evaluate the topical BE of drug products containing moderately lipophilic drugs, more representative of most topical drugs, has not yet been established.
View Article and Find Full Text PDFPurpose: Accurate methods to determine dermal pharmacokinetics are important to increase the rate of clinical success in topical drug development. We investigated in an in vivo pig model whether the unbound drug concentration in the interstitial fluid as determined by dermal open flow microperfusion (dOFM) is a more reliable measure of dermal exposure compared to dermal biopsies for seven prescription or investigational drugs. In addition, we verified standard dOFM measurement using a recirculation approach and compared dosing frequencies (QD versus BID) and dose strengths (high versus low drug concentrations).
View Article and Find Full Text PDFThe importance of plasma protein binding in the early stages of drug development is well recognized. Free and bound drug fractions in plasma are routinely determined with well-established methods. However, for physiological fluids with a small accessible volume and low protein concentrations, such as dermal interstitial fluid (dISF) validated methods are currently missing.
View Article and Find Full Text PDFThe increasing relevance of improved therapeutic monoclonal antibodies (mAbs) to treat neurodegenerative diseases has strengthened the need to reliably measure their brain pharmacokinetic (PK) profiles. The aim of this study was, therefore, to absolutely quantify the therapeutic antibody ocrelizumab (OCR) as a model antibody in mouse brain interstitial fluid (ISF), and to record its PK profile by using cerebral open flow microperfusion (cOFM). Further, to monitor the blood-brain barrier (BBB) integrity using an endogenous antibody with a similar molecular size as OCR.
View Article and Find Full Text PDF