Background: Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of disorders affecting millions worldwide. Despite the widespread adoption of next-generation sequencing (NGS) panels, there remains a critical gap in the genetically diverse and understudied African populations.
Methods: One hundred and thirty-five South African patients affected by various IRDs underwent NGS using a custom-targeted panel sequencing over 100 known genes.
We deployed the Blended Genome Exome (BGE), a DNA library blending approach that generates low pass whole genome (1-4× mean depth) and deep whole exome (30-40× mean depth) data in a single sequencing run. This technology is cost-effective, empowers most genomic discoveries possible with deep whole genome sequencing, and provides an unbiased method to capture the diversity of common SNP variation across the globe. To evaluate this new technology at scale, we applied BGE to sequence >53,000 samples from the Populations Underrepresented in Mental Illness Associations Studies (PUMAS) Project, which included participants across African, African American, and Latin American populations.
View Article and Find Full Text PDFThalassemia is one of the most prevalent monogenic disorders in low- and middle-income countries (LMICs). There are an estimated 270 million carriers of hemoglobinopathies (abnormal hemoglobins and/or thalassemia) worldwide, necessitating global methods and solutions for effective and optimal therapy. LMICs are disproportionately impacted by thalassemia, and due to disparities in genomics awareness and diagnostic resources, certain LMICs lag behind high-income countries (HICs).
View Article and Find Full Text PDF