The Covid-19 pandemic is creating a vast and growing number of challenges for all. People with a history of opioid use disorder (OUD) also may be exposed to additional risks. Piedmont one of the areas most severely affected by the Covid-19 pandemic, with large numbers of people infected and related mortality.
View Article and Find Full Text PDFThe chromogranin-A peptide catestatin modulates a wide range of processes, such as cardiovascular functions, innate immunity, inflammation, and metabolism. We recently found that the cardiac antiadrenergic action of catestatin requires a PI3K-dependent NO release from endothelial cells, although the receptor involved is yet to be identified. In the present work, based on the cationic properties of catestatin, we tested the hypothesis of its interaction with membrane heparan sulphate proteoglycans, resulting in the activation of a caveolae-dependent endocytosis.
View Article and Find Full Text PDFThe involvement of Chromogranin A (CgA) in the cardiovascular function regulation is attributed to its function as a prohormone. Several studies indicated that CgA-derived peptides, particularly Vasostatin-1 (VS-1) and Catestatin (CST), exert signaling effects in numerous organs/systems, including the cardiovascular system. This review focuses on the recently described signaling pathways activated by VS-1 and CST, giving insights into the mechanisms at the basis of their cardiac negative inotropic action, their vasodilator effects and their cardioprotective role observed in different experimental conditions.
View Article and Find Full Text PDFAims: Catestatin (CST) is a chromogranin A (CgA)-derived peptide (hCgA352-372) with three identified human variants (G364S/P370L/R374Q-CST) that show differential potencies towards the inhibition of catecholamine release. Although CST affects several cardiovascular parameters, the mechanisms underlying CST action in the heart have remained elusive. Therefore, we sought to determine the mechanism of action of CST and its variants on ventricular myocardium and endothelial cells.
View Article and Find Full Text PDFThrombopoietin (TPO) is known for its ability to stimulate platelet production. However, little is currently known whether TPO plays a physiological function in the heart. The potential vasodilatory role of TPO was tested on the isolated rat heart.
View Article and Find Full Text PDF