Publications by authors named "R R Strathmann"

AbstractThe form of the cyphonautes larva of bryozoans changes little during development. The ciliated band that generates the feeding current increases nearly in proportion to body length, so that the maximum rate of clearing planktonic food from a volume of water becomes increasingly low relative to body protein. This development is unlike the other larvae that produce a feeding current with bands of simple cilia.

View Article and Find Full Text PDF

AbstractFeeding larvae of echinoderms appear to differ in scope for adaptive developmental plasticity in response to food. Extension of the ciliary band on narrow arms supported by skeletal rods, as in echinoid and ophiuroid larvae, may enable a greater increase in maximum clearance rate per cell added, conferring greater advantages from developing longer ciliary bands when food is scarce. Formation of the juvenile mouth and water vascular system at a new site, as in echinoid and asteroid larvae, permits extensive growth of the juvenile rudiment during larval feeding, with advantages from earlier or more growth of the rudiment when food is abundant.

View Article and Find Full Text PDF

AbstractIn the ophioplutei of brittle stars, the posterior coeloms are commonly assumed to be produced by a transverse fission of the initially formed coeloms; but in ophioplutei of , the posterior coeloms first appear separately as aggregations of mesenchyme-like cells near the base of the posterolateral arms. Initiation of posterior coeloms was similar in ophioplutei of another family and may be similar in diverse ophiuroids. Initiation is easily missed without frequent observations.

View Article and Find Full Text PDF

Many colonial marine animals care for embryos by brooding them on or in their bodies. For brooding to occur, features of the animals must allow it, and brooding must be at least as advantageous as releasing gametes or zygotes. Shared features of diverse colonial brooders are suspension feeding and a body composed of small modules that are indefinitely repeated and can function semi-autonomously, such as polyps or zooids.

View Article and Find Full Text PDF

Molluscan veliger larvae and some annelid larvae capture particulate food between a preoral prototrochal band of long cilia that create a current for both swimming and feeding and a postoral metatrochal band of shorter cilia that beat toward the prototroch. Larvae encountering satiating or noxious particles must somehow swim without capturing particles or else reject large numbers of captured particles. Because high rates of particle capture are inferred to depend on the beat of both ciliary bands, arrest of the metatroch could be one way to swim while reducing captures.

View Article and Find Full Text PDF