Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation.
View Article and Find Full Text PDFStreptococcus mutans antigen I/II (AgI/II) has been widely studied as a candidate vaccine antigen against human dental caries. In this report we follow up on prior studies that indicated that anti-AgI/II immunomodulatory monoclonal antibodies (MAbs) exerted their effects by destabilizing the native protein structure and exposing cryptic epitopes. We show here that similar results can be obtained by immunizing mice with truncated polypeptides out of the context of an intra-molecular interaction that occurs within the full-length molecule and that appears to dampen the functional response against at least two important target epitopes.
View Article and Find Full Text PDFThe adhesin known as Antigen I/II, P1 or PAc of the cariogenic dental pathogen Streptococcus mutans is a target of protective immunity and candidate vaccine antigen. Previously we demonstrated that immunization of mice with S. mutans complexed with anti-AgI/II monoclonal antibodies (MAbs) resulted in changes in the specificity, isotype and functionality of elicited anti-AgI/II antibodies in the serum of immunized mice compared to administration of bacteria alone.
View Article and Find Full Text PDFStreptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.
View Article and Find Full Text PDFWe showed previously that deliberate immunization of BALB/c mice with immune complexes (IC) of the cariogenic bacterium Streptococcus mutans and mAbs against its surface adhesin P1 results in changes in the specificity and isotype of elicited anti-P1 Abs. Depending on the mAb, changes were beneficial, neutral, or detrimental, as measured by the ability of the serum from immunized mice to inhibit bacterial adherence to human salivary agglutinin by a BIAcore surface plasmon resonance assay. The current study further defined changes in the host response that result from immunization with IC containing beneficial mAbs, and evaluated mechanisms by which beneficial immunomodulation could occur in this system.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.