Innovations in nanostructured surfaces have found a practical place in the medical area with use in implant materials for post-operative infection prevention. These textured surfaces should be dual purpose: (1) bactericidal on contact and (2) resistant to biofilm formation over prolonged periods. Here, hydrothermally etched titanium surfaces were tested against two highly antimicrobial resistant microbial species, methicillin-resistant and .
View Article and Find Full Text PDFOptical and x-ray streak cameras are used to study transient phenomena, particularly in the high-energy density physics regime. The Orion laser facility employs many different types of streak cameras, which are used to collect data on laser-plasma interactions as well as to verify the temporal profile and timing between the multiple Orion beamlines. Streak cameras are complex devices with very precise timing associated with them, which can often malfunction, resulting in the loss of shot data.
View Article and Find Full Text PDFNaturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process.
View Article and Find Full Text PDFHypothesis: Nanomaterials have been extensively investigated for a wide range of biomedical applications, including as antimicrobial agents, drug delivery vehicles, and diagnostic devices. The commonality between these biomedical applications is the necessity for the nanoparticle to interact with or pass through the cellular wall and membrane. Cell-nanomaterial interactions/uptake can occur in various ways, including adhering to the cell wall, forming aggregates on the surface, becoming absorbed within the cell wall itself, or transversing into the cell cytoplasm.
View Article and Find Full Text PDFWater temperature plays a crucial role in the physiology of aquatic species, particularly in their survival and development. Thus, resource programs are commonly used to manage water quality conditions for endemic species. In a river system like the Nechako River system, central British Columbia, a water management program was established in the 1980s to alter water release in the summer months to prevent water temperatures from exceeding a 20 °C threshold downstream during the spawning season of Sockeye salmon (Oncorhynchus nerka).
View Article and Find Full Text PDF