The precise control of complex reactions is critical for biological processes, yet our inability to design for specific outcomes limits the development of synthetic analogs. Here, we leverage differentiable simulators to design nontrivial reaction pathways in colloidal assemblies. By optimizing over external structures, we achieve controlled disassembly and particle release from colloidal shells.
View Article and Find Full Text PDFUnlabelled: T cells are generally sparse in hormone receptor-positive (HR+) breast cancer, potentially due to limited antigen presentation, but the driving mechanisms of low T cell abundance remains unclear. Therefore, we defined and investigated programs ('gene modules'), related to estrogen receptor signaling (ERS) and immune signaling using bulk and single-cell transcriptome and multiplexed immunofluorescence of breast cancer tissues from multiple clinical sources and human cell lines. The ERS gene module, dominantly expressed in cancer cells, was negatively associated with immune-related gene modules TNFα/NF-κB signaling and type-I interferon (IFN-I) response, which were expressed in distinct stromal and immune cell types, but also, in part, expressed and preserved as a cancer cell-intrinsic mechanisms.
View Article and Find Full Text PDF