Publications by authors named "R R Gilmont"

When analyzing small stress proteins of rat and human tissues by electrophoretic methods followed by western blotting, and using the anti-HspB1/anti-HspB5 antibody clone 8A7, we unexpectedly found a protein with a molecular mass of ~44 kDa. On two-dimensional gels, this protein resolved into four distinct species. Electrophoretic and immunological evidence suggests that this 44 kDa protein is a derivative of HspB5, most likely a covalently linked HspB5 dimer.

View Article and Find Full Text PDF

Background: The internal anal sphincter (IAS) is a major contributing factor to pressure within the anal canal and is required for maintenance of rectoanal continence. IAS damage or weakening results in fecal incontinence. We have demonstrated that bioengineered, intrinsically innervated, human IAS tissue replacements possess key aspects of IAS physiology, such as the generation of spontaneous basal tone and contraction/relaxation in response to neurotransmitters.

View Article and Find Full Text PDF

Muscle replacement for patients suffering from extensive tissue loss or dysfunction is a major objective of regenerative medicine. To achieve functional status, bioengineered muscle replacement constructs require innervation. Here we describe a method to bioengineer functionally innervated gut smooth muscle constructs using neuronal progenitor cells and smooth muscle cells isolated and cultured from intestinal tissues of adult human donors.

View Article and Find Full Text PDF

Enteric neuronal progenitor cells are neural crest-derived stem cells that can be isolated from fetal, post-natal and adult gut. Neural stem cell transplantation is an emerging therapeutic paradigm to replace dysfunctional or lost enteric neurons in several aganglionic disorders of the GI tract. The impetus to identify an appropriate microenvironment for enteric neuronal progenitor cells derives from the need to improve survival and phenotypic stability following implantation.

View Article and Find Full Text PDF

Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates.

View Article and Find Full Text PDF