Background: Genetic testing has traditionally been divided into molecular genetics and cytogenetics, originally driven by the use of different assays and their associated limitations. Cytogenetic technologies such as karyotyping, fluorescent in situ hybridization or chromosomal microarrays are used to detect large "megabase level" copy number variants and other structural variants such as inversions or translocations. In contrast, molecular methodologies are heavily biased toward subgenic "small variants" such as single nucleotide variants, insertions/deletions, and targeted detection of intragenic, exon level deletions or duplications.
View Article and Find Full Text PDFPolygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer.
View Article and Find Full Text PDFStud Health Technol Inform
June 2023
The National Institute of Health (NIH) Genetic Testing Registry (GTR) provides a variety of information about genetic tests such as relevant methods, conditions, and performing laboratories. This study mapped a subset of GTR data to the newly developed HL7®-FHIR® Genomic Study resource. Using open-source tools, a web application was developed to implement data mapping and provides many GTR test records as Genomic Study resources.
View Article and Find Full Text PDFFamilial Hypercholesterolemia (FH) is underdiagnosed in the United States. Clinical decision support (CDS) could increase FH detection once implemented in clinical workflows. We deployed CDS for FH at an academic medical center and sought clinician insights using an implementation survey.
View Article and Find Full Text PDF