Background: The usefulness of tracheostomy has been questioned in patients with COVID-19 and prolonged invasive mechanical ventilation (IMV).
Aim: To compare the 90-day mortality rate of patients who underwent a tracheostomy due prolonged IMV with those that did not receive this procedure.
Material And Methods: We studied a historical cohort of 92 patients with COVID-19 and prolonged IMV (> 10 days).
Previous reports from our laboratory disclosed the structure and activity of a novel 1H-pyrazolo[4,3-b]pyridine-3-amine scaffold (VU8506) which showed excellent potency, selectivity and in vivo efficacy in preclinical rodent models of Parkinson's disease. Unfortunately, this compound suffered from significant CYP1A2 induction as measured through upstream AhR activation (125-fold) and thus was precluded from further advancement in chronic studies. Herein, we report a new scaffold developed recently which was systematically studied in order to mitigate the CYP1A2 liabilities presented in the earlier scaffolds.
View Article and Find Full Text PDFRett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the () gene. The cognitive impairments seen in mouse models of RTT correlate with deficits in long-term potentiation (LTP) at Schaffer collateral (SC)-CA1 synapses in the hippocampus. Metabotropic glutamate receptor 7 (mGlu) is the predominant mGlu receptor expressed presynaptically at SC-CA1 synapses in adult mice, and its activation on GABAergic interneurons is necessary for induction of LTP.
View Article and Find Full Text PDFRett syndrome (RS) is a neurodevelopmental disorder that shares many symptomatic and pathological commonalities with idiopathic autism. Alterations in protein synthesis-dependent synaptic plasticity (PSDSP) are a hallmark of a number of syndromic forms of autism; in the present work, we explore the consequences of disruption and rescue of PSDSP in a mouse model of RS. We report that expression of a key regulator of synaptic protein synthesis, the metabotropic glutamate receptor 5 (mGlu) protein, is significantly reduced in both the brains of RS model mice and in the motor cortex of human RS autopsy samples.
View Article and Find Full Text PDF