Publications by authors named "R Putnak"

Passive immunization with anti-dengue virus (DENV) immune serum globulin (ISG) or monoclonal antibodies (Mabs) may serve to supplement or replace vaccination for short-term dengue immune prophylaxis. In the present study, we sought to establish proof-of-concept by evaluating several DENV-neutralizing antibodies for their ability to protect rhesus macaques against viremia following live virus challenge, including human anti-dengue ISG, and a human Mab (Mab11/wt) and its genetically engineered variant (Mab11/mutFc) that is unable to bind to cells with Fc gamma receptors (FcγR) and potentiate antibody-dependent enhancement (ADE). In the first experiment, groups of animals received ISG or Mab11/wt at low doses (3-10 mg/kg) or a saline control followed by challenge with DENV-2 at day 10 or 30.

View Article and Find Full Text PDF

Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E.

View Article and Find Full Text PDF

We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is endemic in the Republic of Korea (ROK), posing a medical threat to more than 29,000 U.S. Forces military personnel currently deployed in the ROK.

View Article and Find Full Text PDF

The envelope (E) protein of flaviviruses includes three domains, EI, EII, and EIII, and is the major protective antigen. Because EIII is rich in type-specific and subcomplex-specific neutralizing epitopes and is easy to express, it is particularly attractive as a recombinant vaccine antigen. VaxInnate has developed a vaccine platform that genetically links vaccine antigens to bacterial flagellin, a Toll-like receptor 5 ligand.

View Article and Find Full Text PDF