As awareness on the impact of anthropogenic underwater noise on marine life grows, underwater noise measurement programs are needed to determine the current status of marine areas and monitor long-term trends. The Joint Monitoring Programme for Ambient Noise in the North Sea (JOMOPANS) collaborative project was funded by the EU Interreg to collect a unique dataset of underwater noise levels at 19 sites across the North Sea, spanning many different countries and covering the period from 2019 to 2020. The ambient noise from this dataset has been characterised and compared - setting a benchmark for future measurements in the North Sea area.
View Article and Find Full Text PDFUnderwater noise from human activities is now widely recognised as a threat to marine life. Nevertheless, legislation which directly addresses this source of pollution is lacking. The first (and currently only) example globally is Descriptor 11 of the Marine Strategy Framework Directive (MSFD), adopted by the European Union in 2008, which requires that levels of underwater noise pollution do not adversely affect marine ecosystems.
View Article and Find Full Text PDFUnderwater radiated noise from shipping is globally pervasive and can cause deleterious effects on marine life, ranging from behavioural responses to physiological effects. Acoustic modelling makes it possible to map this noise over large areas and long timescales, and to test mitigation scenarios such as ship speed reduction or spatial restrictions. However, such maps must be validated against measurements to ensure confidence in their predictions.
View Article and Find Full Text PDFVessel sound is now globally recognized as a significant and pervasive pollutant to aquatic life. However, compared to marine environments, there is a paucity of data on sound emitted by vessel activity in freshwater habitats. The Upper Mississippi River (UMR) is home to a diverse array of aquatic life as well as being a key route for barge transportation with 29 locks and dams.
View Article and Find Full Text PDFAnesthesia is used to sedate aquatic animals during transportation or to immobilize them for surgery. However, most studies have focused on the behavioral effects of induction and recovery, without addressing the effect of anesthetic on neural activity. This study investigated the neural response of anterior lateral line afferent fibers in the oyster toadfish, Opsanus tau, during exposure to incremental increases of AQUI-S 20E (0.
View Article and Find Full Text PDF