Background: Changes in the Alzheimer's disease-related apolipoprotein genes expression, occurring parallel with brain ischemia-induced neurodegeneration in the hippocampal CA3 area, may be crucial for the development of memory loss and dementia.
Objective: The aim of the study was to investigate changes in genes expression of () () and () in CA3 area post-ischemia with survival of 2 years.
Methods: The gene expression was evaluated with the use of an RT-PCR protocol after 2, 7, and 30 days and 6, 12, 18, and 24 months post-ischemia.
Curr Alzheimer Res
October 2024
Alzheimer's disease (AD) is the frequent form of dementia in the world. Despite over 100 years of research into the causes of AD, including amyloid and tau protein, the research has stalled and has not led to any conclusions. Moreover, numerous projects aimed at finding a cure for AD have also failed to achieve a breakthrough.
View Article and Find Full Text PDFBackground: Currently, no evidence exists on the expression of apoptosis (CASP3), autophagy (BECN1), and mitophagy (BNIP3) genes in the CA3 area after ischemia with long-term survival.
Objective: The goal of the paper was to study changes in above genes expression in CA3 area after ischemia in the period of 6-24 months.
Methods: In this study, using quantitative RT-PCR, we present the expression of genes associated with neuronal death in a rat ischemic model of Alzheimer's disease.
Recent evidence indicates that experimental brain ischemia leads to dementia with an Alzheimer's disease-like type phenotype and genotype. Based on the above evidence, it was hypothesized that brain ischemia may contribute to the development of Alzheimer's disease. Brain ischemia and Alzheimer's disease are two diseases characterized by similar changes in the hippocampus that are closely related to memory impairment.
View Article and Find Full Text PDF