This paper develops equations for the transmembrane potentials (Vm) that occur in two-dimensional (2-D) sheets of tissue in response to field stimulation from an electrode near but not on the surface of the tissue. Comparison of results with those for one dimension shows that an additional term is present in the 2-D equations that influences the evolution of Vm in the interval between the end of the stimulus and the active propagation that may follow. The results provide an analytical framework for understanding Vm in response to field stimulation in two dimensions, both during the tissue's critical linear phase and thereafter.
View Article and Find Full Text PDFThe cardiac electrical substrate is a challenge to direct measurement of its properties. Optical technology together with the capability to fabricate small electrodes at close spacings opens new possibilities. Here, those possibilities are explored from a theoretical viewpoint.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
April 2003
Core-conductor models, used to integrate the behavior of the longitudinal currents with the distributed voltages of electrically active tissue, have evolved for over a century. A critical step in the use of such models is the computation of membrane current from the set of distributed transmembrane potential values that exist at a given moment, where the potentials are obtained either experimentally or computationally. Over time, interest has developed in a number of substantial extensions of the original model to include such features as nonuniform spatial resistances, loop instead of linear structure, and multiple sites of extracellular stimulation.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
January 1999
The conditions for activation transmission across a region of extracellular space was demonstrated in two-dimensional preparations with results consistent with those previously seen in the one-dimensional fiber studies. In addition, one sees changes in action potential morphology which occur in the tissue nearest the connective-tissue border as well as changes in conduction velocity along the border. These results hinge on an adequate representation of the connective-tissue region achieved by careful implementation of the boundary conditions in the intracellular and interstitial spaces and the expansion of the connective-tissue discretization to a "double-tier network" description.
View Article and Find Full Text PDF