Acquisition of drug resistance remains a chief impediment to successful cancer therapy, and we previously described a transient drug-tolerant cancer cell population (DTPs) whose survival is in part dependent on the activities of the histone methyltransferases G9a/EHMT2 and EZH2, the latter being the catalytic component of the polycomb repressive complex 2 (PRC2). Here, we apply multiple proteomic techniques to better understand the role of these histone methyltransferases (HMTs) in the establishment of the DTP state. Proteome-wide comparisons of lysine methylation patterns reveal that DTPs display an increase in methylation on K116 of PRC member Jarid2, an event that helps stabilize and recruit PRC2 to chromatin.
View Article and Find Full Text PDFMaintenance of phenotypic heterogeneity within cell populations is an evolutionarily conserved mechanism that underlies population survival upon stressful exposures. We show that the genomes of a cancer cell subpopulation that survives treatment with otherwise lethal drugs, the drug-tolerant persisters (DTPs), exhibit a repressed chromatin state characterized by increased methylation of histone H3 lysines 9 and 27 (H3K9 and H3K27). We also show that survival of DTPs is, in part, maintained by regulators of H3K9me3-mediated heterochromatin formation and that the observed increase in H3K9me3 in DTPs is most prominent over long interspersed repeat element 1 (LINE-1).
View Article and Find Full Text PDFThe KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding.
View Article and Find Full Text PDFChromatin remodelling can be involved in some of the epigenetic modifications found in tumor cells. One of the mechanisms at the basis of chromatin dynamics is likely to be synthesis and incorporation of replacement histone variants, such as the H1˚ linker histone. Regulation of the expression of this protein can thus be critical in tumorigenesis.
View Article and Find Full Text PDFApoptotic caspase activation mechanisms are well defined, yet inactivation modes remain unclear. The death receptors (DRs), DR4, DR5, and Fas, transduce cell-extrinsic apoptotic signals by recruiting caspase-8 into a death-inducing signaling complex (DISC). At the DISC, Cullin3-dependent polyubiquitination on the small catalytic subunit of caspase-8 augments stimulation.
View Article and Find Full Text PDF