Combinatorial post-translational modifications (PTMs), such as those forming the so-called "histone code", have been linked to cell differentiation, embryonic development, cellular reprogramming, aging, cancers, neurodegenerative disorders, . Nevertheless, a reliable mass spectral analysis of the combinatorial isomers represents a considerable challenge. The difficulty stems from the incompleteness of information that could be generated by the standard MS to differentiate cofragmented isomeric sequences in their naturally occurring mixtures based on the fragment mass-to-charge ratio and relative abundance information only.
View Article and Find Full Text PDFObjective: To create a new methodology that has a single simple rule to identify height outliers in the electronic health records (EHR) of children.
Methods: We constructed 2 independent cohorts of children 2 to 8 years old to train and validate a model predicting heights from age, gender, race and weight with monotonic Bayesian additive regression trees. The training cohort consisted of 1376 children where outliers were unknown.
We present a protein database search engine for the automatic identification of peptide and protein sequences using the recently introduced method of two-dimensional partial covariance mass spectrometry (2D-PC-MS). Because the 2D-PC-MS measurement reveals correlations between fragments stemming from the same or consecutive decomposition processes, the first-of-its-kind 2D-PC-MS search engine is based entirely on the direct matching of the pairs of theoretical and the experimentally detected correlating fragments, rather than of individual fragment signals or their series. We demonstrate that the high structural specificity afforded by 2D-PC-MS fragment correlations enables our search engine to reliably identify the correct peptide sequence, even from a spectrum with a large proportion of contaminant signals.
View Article and Find Full Text PDFArginine methylation is a common protein post-translational modification (PTM) that plays a key role in eukaryotic cells. Three distinct types of this modification are found in mammals: asymmetric NN-dimethylarginine (aDMA), symmetric NN-dimethylarginine (sDMA), and an intermediate N-monomethylarginine (MMA). Elucidation of regulatory mechanisms of arginine methylation in living organisms requires precise information on both the type of the modified residues and their location inside the protein amino acid sequences.
View Article and Find Full Text PDF