Publications by authors named "R Pettinato"

AMPylation is a post-translational modification involving the transfer of adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to target proteins, serving as a critical regulatory mechanism in cellular functions. This study aimed to expand the phenotypic spectrum associated with mutations in the FICD gene, which encodes an adenyltransferase enzyme involved in both AMPylation and deAMPylation. A clinical evaluation was conducted on a patient presenting with a complex clinical profile.

View Article and Find Full Text PDF

The loss of one of the two copies of the 9 bp tandem repeat sequence (CCCCCTCTA) located in the small non-coding region between the cytochrome oxidase II (COII) and the lysine tRNA genes in human mtDNA has been reported to be polymorphic in Asian, Oceanian and Sub-Saharan African populations, but it has rarely been observed in Europe. In this study, we will evaluate the possible association between the MIC9D polymorphism and cognitive disorders. A genetic analysis of unrelated Sicilian patients with cognitive deficits was performed to identify the 9 bp deletion MIC9D polymorphism.

View Article and Find Full Text PDF

Aromatic L-amino acid decarboxylase deficiency (AADCd) is a rare autosomal recessive neurometabolic disorder caused by AADC deficiency, an enzyme encoded by the gene. Since the enzyme is involved in the biosynthesis of serotonin and dopamine, its deficiency determines the lack of these neurotransmitters, but also of norepinephrine and epinephrine. Onset is early and the key signs are hypotonia, movement disorders (oculogyric crises, dystonia and hypokinesia), developmental delay and autonomic dysfunction.

View Article and Find Full Text PDF

Mitochondrial tRNA is considered a hot-spot for non-syndromic and aminoglycoside-induced hearing loss. However, many patients have been described with more extensive neurological diseases, mainly including epilepsy, myoclonus, ataxia, and myopathy. We describe a novel homoplasmic m.

View Article and Find Full Text PDF

Determining pathogenicity of genomic variation identified by next-generation sequencing techniques can be supported by recurrent disruptive variants in the same gene in phenotypically similar individuals. However, interpretation of novel variants in a specific gene in individuals with mild-moderate intellectual disability (ID) without recognizable syndromic features can be challenging and reverse phenotyping is often required. We describe 24 individuals with a de novo disease-causing variant in, or partial deletion of, the F-box only protein 11 gene (FBXO11, also known as VIT1 and PRMT9).

View Article and Find Full Text PDF