Additions of cysteine thiols to Michael acceptors underpin the mechanism of action of several covalent drugs (e.g., afatinib, osimertinib, ibrutinib, neratinib, and CC-292).
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) inhibitors interrupt EGFR-dependent cellular signaling pathways that lead to accelerated tumor growth and proliferation. Mutation of a threonine in the inhibitor binding pocket, known as the "gatekeeper", to methionine (T790M) confers acquired resistance to several EGFR-selective inhibitors. We studied interactions between EGFR inhibitors and the gatekeeper residues of the target protein.
View Article and Find Full Text PDFFollowing the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors.
View Article and Find Full Text PDFPatients with non-small cell lung carcinoma (NSCLC) with activating mutations in epidermal growth factor receptor (EGFR) initially respond well to the EGFR inhibitors erlotinib and gefitinib. However, all patients relapse because of the emergence of drug-resistant mutations, with T790M mutations accounting for approximately 60% of all resistance. Second-generation irreversible EGFR inhibitors are effective against T790M mutations in vitro, but retain affinity for wild-type EGFR (EGFR(WT)).
View Article and Find Full Text PDFUnlabelled: Patients with non-small cell lung cancer (NSCLC) with activating EGF receptor (EGFR) mutations initially respond to first-generation reversible EGFR tyrosine kinase inhibitors. However, clinical efficacy is limited by acquired resistance, frequently driven by the EGFR(T790M) mutation. CO-1686 is a novel, irreversible, and orally delivered kinase inhibitor that specifically targets the mutant forms of EGFR, including T790M, while exhibiting minimal activity toward the wild-type (WT) receptor.
View Article and Find Full Text PDF