Mol Cell Endocrinol
December 2018
In this study, we used an experimental model of congenital hypothyroidism to show that deficient thyroid hormones (TH) disrupt different neurochemical, morphological and functional aspects in the cerebral cortex of 15-day-old offspring. Our results showing decreased glutamine synthetase (GS) activity and Ca overload in the cerebral cortex of hypothyroid pups suggest misregulated glutamate metabolism associated with developmentally induced TH deficiency. The C-MeAIB accumulation indicates upregulated System A activity and glutamine uptake by neurons.
View Article and Find Full Text PDFAlthough methylphenidate (MPH) is ubiquitously prescribed to children and adolescents, the consequences of chronic utilization of this psychostimulant are poorly understood. In this study, we investigated the effects of MPH on cytoskeletal homeostasis and lipid content in rat hippocampus. Wistar rats received intraperitoneal injections of MPH (2.
View Article and Find Full Text PDFMol Cell Endocrinol
July 2018
In the present study we provide evidence that 3,3',5'-triiodothyronine (reverse T, rT) restores neurochemical parameters induced by congenital hypothyroidism in rat hippocampus. Congenital hypothyroidism was induced by adding 0.05% propylthiouracil in the drinking water from gestation day 8 and continually up to lactation day 15.
View Article and Find Full Text PDFKynurenic acid (KYNA) is a neuroactive metabolite of tryptophan known to modulate a number of mechanisms involved in neural dysfunction. Although its activity in the brain has been widely studied, the effect of KYNA counteracting the actions of quinolinic acid (QUIN) remains unknown. The present study aims at describing the ability of 100 μM KYNA preventing cytoskeletal disruption provoked by QUIN in astrocyte/neuron/microglia mixed culture.
View Article and Find Full Text PDF