Publications by authors named "R Perl-Treves"

The head-to-head oriented pair of melon resistance genes, and , control resistance to races 0 and 2 and papaya ringspot virus (PRSV), respectively. They encode, via several RNA splice variants, TIR-NBS-LRR proteins, and Prv has a C-terminal extra domain with a second NBS homologous sequence. In other systems, paired R-proteins were shown to operate by "labor division," with one protein having an extra integrated domain that directly binds the pathogen's Avr factor, and the second protein executing the defense response.

View Article and Find Full Text PDF

The majority of plant disease resistance (R) genes encode nucleotide binding-leucine-rich repeat (NLR) proteins. In melon, two closely linked NLR genes, Fom-1 and Prv, were mapped and identified as candidate genes that control resistance to Fusarium oxysporum f.sp.

View Article and Find Full Text PDF

Over the past decade, there have been accumulating reports from farmers and field extension personnel on the increasing incidence and spread of onion () bulb basal rot in northern Israel. The disease is caused mainly by species. Rotting onion bulbs were sampled from fields in the Golan Heights in northeastern Israel during the summers of 2017 and 2018.

View Article and Find Full Text PDF

Cucurbits represent an attractive model to explore the dynamics of fruit set, whose regulation is not fully understood, despite its importance for yield determination. A fertilized ovary must integrate signals from distant plant parts and 'decide' whether to set fruit, or remain inhibited and later senesce. Here, we set out to characterize first-fruit inhibition (FFI), that is, the inhibitory effect of the first fruit on subsequent development of younger ovaries during pollination-induced and parthenocarpic fruit set.

View Article and Find Full Text PDF