Publications by authors named "R Penafiel Marfil"

One of the main challenges faced by iris recognition systems is to be able to work with people in motion, where the sensor is at an increasing distance (more than 1 m) from the person. The ultimate goal is to make the system less and less intrusive and require less cooperation from the person. When this scenario is implemented using a single static sensor, it will be necessary for the sensor to have a wide field of view and for the system to process a large number of frames per second (fps).

View Article and Find Full Text PDF

There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems.

View Article and Find Full Text PDF

Artificial vision systems cannot process all the information that they receive from the world in real time because it is highly expensive and inefficient in terms of computational cost. Inspired by biological perception systems, artificial attention models pursuit to select only the relevant part of the scene. On human vision, it is also well established that these units of attention are not merely spatial but closely related to perceptual objects (proto-objects).

View Article and Find Full Text PDF

One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped.

View Article and Find Full Text PDF

In biological vision systems, attention mechanisms are responsible for selecting the relevant information from the sensed field of view, so that the complete scene can be analyzed using a sequence of rapid eye saccades. In recent years, efforts have been made to imitate such attention behavior in artificial vision systems, because it allows optimizing the computational resources as they can be focused on the processing of a set of selected regions. In the framework of mobile robotics navigation, this work proposes an artificial model where attention is deployed at the level of objects (visual landmarks) and where new processes for estimating bottom-up and top-down (target-based) saliency maps are employed.

View Article and Find Full Text PDF