Responsive nanomaterials have emerged as promising candidates for advanced drug delivery systems (DDSs), offering the potential to precisely target disease sites and enhance treatment efficacy. To fulfil their potential, such materials need to be engineered to respond to specific variations in biological conditions. In this work, we present a series of pH/redox dual-responsive hybrid nanoparticles featuring an amphiphilic shell polymer and a pH-responsive core polymer.
View Article and Find Full Text PDFFive complexes of gallium derived from hydroxamic acids have been synthesised, characterised, and their anti-bacterial activity and mammalian cell toxicity established. These are three metal-organic complexes; [Ga(BPHA)] 1, [Ga(BHA-)] 2, [Ga(SHA-)(SHA-)] 3, and two heteroleptic organometallic complexes [GaMe(BPHA)] 4, and [GaMe(BHA-)] 5, along with the iron complex [Fe(BPHA)] 6 (BPHA-H = -benzoyl--phenylhydroxamic acid, BHA-H = phenylhydroxamic acid, and SHA-H = salicylhydroxamic acid). Solid-state structures of 1, 4-6 were identified by single-crystal X-ray crystallography.
View Article and Find Full Text PDFSix novel tri-aryl antimony(V) hydroximato complexes (3-8) with composition [SbAr(ONCR)] (3: Ar = Ph, R = o-(OH)Ph, 4: Ar = Ph, R = Me, 5: Ar = Ph, R = Ph; 6: Ar = Mes, R = Me, 7: Ar = Mes, R = Ph, 8: Ar = Mes, R = o-(OH)Ph (where Ph = phenyl, Me = methyl, Mes = mesityl)), were synthesised and evaluated for anti-parasitic activity towards Leishmania major (L. major) promastigotes and amastigotes. Complexes of the form [SbAr(ONCR)], with the dianionic hydroximato ligand binding O,O'-bidentate to the Sb(V) centre, exist in the solid-state for the mesityl-derived complexes.
View Article and Find Full Text PDFGraphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 μg m or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits.
View Article and Find Full Text PDF