Raman spectroscopy is a widely used technique to characterize nanomaterials because of its convenience, non-destructiveness, and sensitivity to materials change. The primary purpose of this work is to determine via Raman spectroscopy the average thickness of MoS thin films synthesized by direct liquid injection pulsed-pressure chemical vapor deposition (DLI-PP-CVD). Such samples are constituted of nanoflakes (with a lateral size of typically 50 nm, i.
View Article and Find Full Text PDFHybrid van der Waals heterostructures made of 2D materials and organic molecules exploit the high sensitivity of 2D materials to all interfacial modifications and the inherent versatility of the organic compounds. In this study, we are interested in the quinoidal zwitterion/MoS hybrid system in which organic crystals are grown by epitaxy on the MoS surface and reorganize in another polymorph after thermal annealing. By means of field-effect transistor measurements recorded all along the process, atomic force microscopy and density functional theory calculations we demonstrate that the charge transfer between quinoidal zwitterions and MoS strongly depends on the conformation of the molecular film.
View Article and Find Full Text PDFThe ability to confine light into tiny spatial dimensions is important for applications such as microscopy, sensing, and nanoscale lasers. Although plasmons offer an appealing avenue to confine light, Landau damping in metals imposes a trade-off between optical field confinement and losses. We show that a graphene-insulator-metal heterostructure can overcome that trade-off, and demonstrate plasmon confinement down to the ultimate limit of the length scale of one atom.
View Article and Find Full Text PDFThere is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K for state-of-the-art materials).
View Article and Find Full Text PDFWe report on electron cooling power measurements in few-layer graphene excited by Joule heating by means of a new setup combining electrical and optical probes of the electron and phonon baths temperatures. At low bias, noise thermometry allows us to retrieve the well known acoustic phonon cooling regimes below and above the Bloch-Grüneisen temperature, with additional control over the phonon bath temperature. At high electrical bias, we show the relevance of direct optical investigation of the electronic temperature by means of black-body radiation measurements.
View Article and Find Full Text PDF