The synthesis of multifunctional poly(amidoamine) (PAMAM)-based dendrimers containing a cleavable disulfide linker within each arm of the dendrimer, together with condensable triethoxysilyl groups on the periphery of the dendrimer, is described. The dendrimers were mixed with 1,4-bis(triethoxysilyl)benzene and subsequently transformed into silsesquioxane gels or periodic mesoporous organosilicas (PMOs) to generate materials with dendrimers covalently embedded within the interior of the silsesquioxane networks. Subsequent treatment of the gels with dithiothreitol enabled the core of the dendrimers to be selectively cleaved at the disulfide site, thus generating thiol functions localised within the pores.
View Article and Find Full Text PDFThe variety of H bond (HB) interactions is a source of inspiration for bottom-up molecular engineering through self-aggregation. Non-conventional intermolecular HBs between N,N'-disubstituted urea and thiourea are studied in detail by vibrational spectroscopies and ab initio calculations. Raman and IR mode assignments are given.
View Article and Find Full Text PDFWe report on the preparation of a hybrid nanomaterial made up of 1D filaments of an antiferromagnetic self-assembling bicopper complex encapsulated in polymer nanofibrils. The encapsulation process is achieved through the heterogeneous nucleation of the growth of polymer fibrils obtained by thermoreversible gelation as shown by calorimetry experiments. Neutron scattering experiments confirm that the filaments of a bicopper complex retain their 1D character after encapsulation in the fibrils.
View Article and Find Full Text PDFBinary c-T phase diagrams of organogelators in solvent are frequently simplified to two domains, gel and sol, even when the melting temperatures display two distinct regimes, an increase with T and a plateau. Herein, the c-T phase diagram of an organogelator in solvent is elucidated by rheology, DSC, optical microscopy, and transmitted light intensity measurements. We evidence a miscibility gap between the organogelator and the solvent above a threshold concentration, cL.
View Article and Find Full Text PDFIn this work, we develop the concept of evaporation-induced self-structuring as a novel approach for producing organised films by exploiting cooperative physical and chemical interactions under far-from-equilibrium conditions (spin-coating), using sol-gel precursors with multiple functional groups. Thin films of self-structured silsesquioxane nanohybrids have been deposited by spin coating through the sol-gel hydrolysis and condensation of a bridged organosilane bearing self-assembling urea groups. The resulting nanostructure, investigated by FTIR, AFM and SEM, is shown to be highly dependent on the catalyst used (nucleophilic or acidic), and can be further modulated by varying the spinning rate.
View Article and Find Full Text PDF