This study explores a novel approach to obtaining 3D printed strain sensors, focusing on how changing the printing conditions can produce a different piezoresistive response. Acrylonitrile butadiene styrene (ABS) filled with different weight concentrations of carbon nanotubes (CNTs) was printed in the form of dog bones via fused filament fabrication (FFF) using two different raster angles (0-90°). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) in TUNA mode (TUNA-AFM) were used to study the morphological features and the electrical properties of the 3D printed samples.
View Article and Find Full Text PDFWhen in contact with water, poly(lactic acid), PLA, undergoes several physical changes. A very evident one is opacification, namely the change from the typical transparent appearance to a white opaque color. This phenomenon is particularly significant for many applications, including packaging, since opacity hinders the possibility of a clear look of the packed goods and also worsens the consumers' perceptions.
View Article and Find Full Text PDFThe huge amount of plastics generated by the massive use of packaging makes it difficult to manage waste safely. Introducing biodegradable polymers, such as poly(lactic acid) (PLA), can at least partially reduce the environmental pollution from plastic waste. Biodegradable polymers must have a degradation rate appropriate for the intended use to replace durable plastics.
View Article and Find Full Text PDFMicro-injection molding (µIM) is a widespread process for the production of plastic parts with at least one dimension, or feature, in the microscale (conventionally below 500 µm). Despite injection molding being recognized as a robust process for obtaining parts with high geometry accuracy, one last occurrence remains a challenge in micro-injection molding, especially when junctions are present on the parts: the so-called weld lines. As weld lines are crucial in determining mechanical part performances, it is mandatory to clarify weld line position and characteristics, especially at the industrial scale during mold design, to limit failure causes.
View Article and Find Full Text PDF