Genetically encoded optical sensors and advancements in microscopy instrumentation and techniques have revolutionized the scientific toolbox available for probing complex biological processes such as release of specific neurotransmitters. Most genetically encoded optical sensors currently used are based on fluorescence and have been highly successful tools for single-cell imaging in superficial brain regions. However, there remains a need to develop new tools for reporting neuronal activity within deeper structures without the need for hardware such as lenses or fibers to be implanted within the brain.
View Article and Find Full Text PDFCa plays many critical roles in cell physiology and biochemistry, leading researchers to develop a number of fluorescent small molecule dyes and genetically encodable probes that optically report changes in Ca concentrations in living cells. Though such fluorescence-based genetically encoded Ca indicators (GECIs) have become a mainstay of modern Ca sensing and imaging, bioluminescence-based GECIs-probes that generate light through oxidation of a small-molecule by a luciferase or photoprotein-have several distinct advantages over their fluorescent counterparts. Bioluminescent tags do not photobleach, do not suffer from nonspecific autofluorescent background, and do not lead to phototoxicity since they do not require the extremely bright extrinsic excitation light typically required for fluorescence imaging, especially with 2-photon microscopy.
View Article and Find Full Text PDFThe gastrointestinal (GI) microbiota forms a mutualistic relationship with the host through complex and dynamic interactions. Because of the complexity and interindividual variation of the GI microbiota, investigating how members of the microbiota interact with each other, as well as with the host, is daunting. The altered Schaedler flora (ASF) is a model community of eight microorganisms that was developed by R.
View Article and Find Full Text PDFThe mammalian gastrointestinal (GI) tract is inhabited by over a hundred species of symbiotic bacteria. Differences among individuals in the composition of the GI flora may contribute to variation in in vivo experimental analyses and disease susceptibility. To investigate potential interindividual differences in GI flora composition, we developed real-time quantitative PCR-based assays for the detection of the eight members of the Altered Schaedler Flora (ASF) as representative members of different bacterial niches within the mammalian GI tract.
View Article and Find Full Text PDFTwo Belgian geldings, 4 and 14 years old, respectively, with muscle atrophy, weakness, and abnormal gait characteristic of severe advanced shivers were examined clinically and on necropsy. Neurologic examination revealed no evidence of ataxia, and the clinical diagnosis was neuromuscular weakness and shivers. Necropsies of both horses, including examination of pituitary, brain, spinal cord, spinal roots and ganglia, and peripheral nerves, revealed no gross or histologic abnormalities.
View Article and Find Full Text PDF