The sheared-flow stabilized Z pinch has demonstrated long-lived plasmas with fusion-relevant parameters. We present the first experimental results demonstrating sustained, quasi-steady-state neutron production from the fusion Z-pinch experiment, operated with a mixture of 20% deuterium/80% hydrogen by pressure. Neutron emissions lasting approximately 5 μs are reproducibly observed with pinch currents of approximately 200 kA during an approximately 16 μs period of plasma quiescence.
View Article and Find Full Text PDFThe Zeeman effect has been used for measurement of magnetic fields in low-temperature plasma, but the diagnostic technique is difficult to implement in a high-temperature plasma. This paper describes new instrumentation and methodology for simultaneous measurement of the entire Doppler-broadened left and right circularly polarized Zeeman spectra in high-temperature plasmas. Measurements are made using spectra emitted parallel to the magnetic field by carbon impurities in high-temperature plasma.
View Article and Find Full Text PDFRev Sci Instrum
March 2007
Calculating magnetic fields at the surface of a flux conserver, perfect conductor, for displaced plasma currents is useful for understanding modes of a Z-pinch. The magnetic fields measured at the flux conserver are a sum of the magnetic fields from the plasma current and the eddy currents which form in the walls to keep the flux constant. While the magnetic field at the wall from the plasma current alone is easily calculated using the Biot-Savart law, finding the eddy currents in the flux conserver which satisfy the boundary conditions can be a tedious process.
View Article and Find Full Text PDFTheoretical studies have predicted that the Z-pinch can be stabilized with a sufficiently sheared axial flow [U. Shumlak and C. W.
View Article and Find Full Text PDF