Publications by authors named "R Oulton"

Surface lattice resonance (SLR) lasers, where the gain is supplied by a thin-film active material and the feedback comes from multiple scattering by plasmonic nanoparticles, have shown both low threshold lasing and tunability of the angular and spectral emission at room temperature. However, typically used materials such as organic dyes and QD films suffer from photodegradation, which hampers practical applications. Here, we demonstrate photostable single-mode lasing of SLR modes sustained in an epitaxial solid-state InP slab waveguide.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent advancements involve using a pump beam to enhance signal conversion via four-wave mixing (FWM), focusing on resonances at the pump wavelength to achieve better nonlinear imaging.
  • * This approach allows for broadband nonlinear imaging across a wide infrared range (1000-4000 nm) with metasurfaces, representing a significant improvement for future compact photonic devices in all-optical infrared imaging.
View Article and Find Full Text PDF

Imaging with undetected photons relies upon nonlinear interferometry to extract the spatial image from an infrared probe beam and reveal it in the interference pattern of an easier-to-detect visible beam. Typically, the transmission and phase images are extracted using phase-shifting techniques and combining interferograms from multiple frames. Here we show that off-axis digital holography enables reconstruction of both transmission and phase images at the infrared wavelength from a single interferogram, and hence a single frame, recorded in the visible.

View Article and Find Full Text PDF

Strongly-interacting nanomagnetic arrays are ideal systems for exploring reconfigurable magnonics. They provide huge microstate spaces and integrated solutions for storage and neuromorphic computing alongside GHz functionality. These systems may be broadly assessed by their range of reliably accessible states and the strength of magnon coupling phenomena and nonlinearities.

View Article and Find Full Text PDF

The temporal coherence of an ideal Bose gas increases as the system approaches the Bose-Einstein condensation threshold from below, with coherence time diverging at the critical point. However, counterexamples have been observed for condensates of photons formed in an externally pumped, dye-filled microcavity, wherein the coherence time decreases rapidly for increasing particle number above threshold. This Letter establishes intermode correlations as the central explanation for the experimentally observed dramatic decrease in the coherence time beyond critical pump power.

View Article and Find Full Text PDF