Biologically engineered nanomaterials give rise to unique and intriguing properties, which are not available in nature. The full-realization of such has been hindered by the lack of robust and straightforward techniques to produce the required architectures. Here a new bottomup bionano-engineering route is developed to construct nanomaterials using a guided assembly of collagen building blocks, establishing a lithographic process for three-dimensional collagen-based hierarchical micronano-architectures.
View Article and Find Full Text PDFThe synthesis of artificial sequence-defined polymers that match and extend the functionality of proteins is an important goal in materials science. One way of achieving this is to program a sequence of chemical reactions between precursor building blocks by means of attached oligonucleotide adapters. However, hydrolysis of the reactive building blocks has so far limited the length and yield of product that can be obtained using DNA-templated reactions.
View Article and Find Full Text PDFBiocatalysis has the potential to enable green chemistry. New methods of enzyme immobilisation will be required to improve enzyme stability, product purification, and compatibility of different enzymes in the same reaction conditions. Deoxyribonucleic acid (DNA) stands out among supramolecular scaffolds, as simple Watson-Crick base-pairing rules can be used to rationally design a unique nanoscale environment around each individual enzyme in a cascade.
View Article and Find Full Text PDFThis article presents the experience of a team of students and academics in developing a post-graduate training program in the new field of Synthetic Biology. Our Centre for Doctoral Training in Synthetic Biology (SynBioCDT) is an initiative funded by the United Kingdom's Research Councils of Engineering and Physical Sciences (EPSRC), and Biotechnology and Biological Sciences (BBSRC). SynBioCDT is a collaboration between the Universities of Oxford, Bristol and Warwick, and has been successfully running since 2014, training 78 students in this field.
View Article and Find Full Text PDF