Motor control largely depends on the deep layer 5 (L5) pyramidal neurons that project to subcortical structures. However, it is largely unknown if these neurons are functionally segregated with distinct roles in movement performance. Here, we analyzed mouse motor cortex L5 pyramidal neurons projecting to the red and pontine nuclei during movement preparation and execution.
View Article and Find Full Text PDFIntroduction: Pyramidal tract neurons (PTNs) are fundamental elements for motor control. However, it is largely unknown if PTNs are segregated into different subtypes with distinct characteristics.
Methods: Using anatomical and electrophysiological tools, we analyzed in mice motor cortex PTNs projecting to red and pontine midbrain nuclei, which are important hubs connecting cerebral cortex and cerebellum playing a critical role in the regulation of movement.
The ability to learn motor skills implicates an improvement in accuracy, speed and consistency of movements. Motor control is related to movement execution and involves corticospinal neurons (CSp), which are broadly distributed in layer 5B of the motor and somatosensory cortices. CSp neurons innervate the spinal cord and are functionally diverse.
View Article and Find Full Text PDFBrain aging is a natural process that involves structural and functional changes that lead to cognitive decline, even in healthy subjects. This detriment has been associated with N-methyl-D-aspartate receptor (NMDAR) hypofunction due to a reduction in the brain levels of D-serine, the endogenous NMDAR co-agonist. However, it is not clear if D-serine supplementation could be used as an intervention to reduce or reverse age-related brain alterations.
View Article and Find Full Text PDFGlutamatergic transmission through NMDA receptors (NMDARs) is important for the function of peripheral tissues. In the bone, NMDARs and its co-agonist, D-serine participate in all the phases of the remodeling. In the vasculature, NMDARs exerts a tonic vasodilation decreasing blood perfusion in the and the filtration rate in the renal glomerulus.
View Article and Find Full Text PDF