Publications by authors named "R Oleggini"

Lysyl oxidase (LOX) is the enzyme that facilitates the cross-linking of collagen and elastin, although other functions for this enzyme have been indicated. Of these other functions, we describe herein the ability of LOX to regulate several gene promoters, like collagen III, elastin, and cyclin D1. We have previously demonstrated a specific binding between LOX and histone H1, in vitro.

View Article and Find Full Text PDF

Lysyl oxidase (LOX) plays a key role in the maturation of the extra-cellular matrix, by inducing the formation of lysyl cross-links in collagen and elastin molecules. Beside its enzymic activity, LOX is able to regulate the promoter of collagen III, one of its natural substrates. In this paper we demonstrated that LOX regulates also the promoter of elastin, inducing an important activation of its activity.

View Article and Find Full Text PDF

Podocin (NPHS2) expression in podocytes is associated with variable degrees of proteinuria and progression to renal failure in different glomerular diseases that suggests different expression profiles in NPHS2 promoter. Three functional polymorphisms in NPHS2 promoter (-51T, -116T, and -535 insCTTTTTT(3)) were found determining strong downregulation (-73, -59, and -82%, respectively) of the reporter gene expression when transfected in podocytes. Electrophoretic mobility shift assay experiments showed that all wild-type variants (-51G, -116C, and -535 insCTTTTTT(2)) formed specific DNA-protein complexes with podocyte nuclear extracts that were abolished by the presence of the rare forms (-51T, -116T, and -535 insCTTTTTT(3)).

View Article and Find Full Text PDF

Podocin (NPHS2) is a component of the glomerular slit-diaphragm, with major regulatory functions in renal permeability of proteins. Loss of podocin and decrease in resynthesis may influence the outcome of proteinuric renal disease such as segmental glomerulosclerosis (FSGS), and promoter functionality plays a key role in this process. NPHS2 promoter variants with functional activity may be a part of the problem of podocin resynthesis.

View Article and Find Full Text PDF

Idiopathic nephrotic syndrome (iNS) with resistance or dependence to steroids is a common disease in children but in spite of an increasing clinical impact its pathogenesis is unknown. We screened for the presence of circulating antibodies against glomerular (podocytes, mesangium) and tubular cells (tubular epithelia) a cohort of 60 children with iNS including 8 patients with a familial trait of iNS or with proven mutation of NPHS1-NPHS2 and 12 with good sensitivity to steroids. Positive sera were found in 8 cases, all belonging to the category without familial trait/molecular defects.

View Article and Find Full Text PDF