We confirmed that sugar-induced cell death (SICD) occurs in the bottom fermenting yeast Saccharomyces pastorianus under anaerobic conditions and that mitochondrial DNA is only partly required for SICD. Fermentation tests using different ratios of glucose and non-glucose nutrients demonstrated that SICD is influenced by the balance between these nutrients.
View Article and Find Full Text PDFWe propose a concept that neuraminidase (NA) promotes virus entry into target cells during the initial stage of viral infection, in addition to the generally accepted concept that influenza virus NA promotes the release of progeny virus from a host cell at the final stage of viral replication. When NA activity was inhibited with specific inhibitors such as zanamivir and oseltamivir carboxylate, infection efficiency of the virus to MDCK and A549 cells was reduced to approximately 1/4 and 1/8, respectively. NA inhibitors did not significantly affect virus binding and envelope fusion activities, when assessed using an erythrocyte and virus system.
View Article and Find Full Text PDFMadin Darby canine kidney (MDCK) cells have generally been used to isolate influenza viruses from patients. However, in recent years, most fresh isolates of the H3N2 subtype have shown poor growth in MDCK cell cultures. Such low-growth viruses were often converted to high-growth viruses after several passages through MDCK cell cultures.
View Article and Find Full Text PDFDeletion of oligosaccharide side chains near the receptor binding site of influenza virus A/USSR/90/77 (H1N1) hemagglutinin (HA) enhanced the binding of HA to erythrocyte receptors, as was also observed with A/FPV/Rostock/34 (H7N1). Correlated with the enhancement of binding activity, the cell fusion activity of HA was reduced. A mutant HA in which three oligosaccharide side chains were deleted showed the highest level of binding and the lowest level of fusion among the HAs tested.
View Article and Find Full Text PDFInfluenza virus hemagglutinin (HA) has three highly conserved acylation sites close to the carboxyl terminus of the HA2 subunit, one in the transmembrane domain and two in the cytoplasmic domain. Each site is modified by palmitic acid through a thioester linkage to cysteine. To elucidate the biological significance of HA acylation, the acylation sites of HA of influenza virus strain A/USSR/77 (H1N1) were changed by site-directed mutagenesis, and the membrane fusion activity of mutant HAs lacking the acylation site(s) was examined quantitatively using transfer assays of lipid (R18) and aqueous (calcein) dyes.
View Article and Find Full Text PDF