Understanding the soil biogeochemical responses to increasing global warming in the near future is essential for improving our capacity to mitigate the impacts of climate change on highly vulnerable Mediterranean ecosystems. Previous studies have primarily focused on the effects of warming on various biogeochemical processes. However, there is limited knowledge about how the changes in water availability associated to high temperatures can alter the bioavailability and dynamics of soil elements, thereby impacting ecosystem productivity, species composition, and pollution through soil biogeochemical and hydrological processes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
Biogenic volatile organic compounds (BVOCs) play critical roles in ecosystems at various scales, influencing above- and below-ground interactions and contributing to the atmospheric environment. Nonetheless, there is a lack of research on soil BVOC fluxes and their response to environmental changes. This study aimed to investigate the impact of drought, nitrogen (N) fertilization, and litter manipulation on soil BVOC fluxes in a Mediterranean forest.
View Article and Find Full Text PDFSoil mineral elements play a crucial role in ecosystem productivity and pollution dynamics. Climate models project an increase in drought severity in the Mediterranean Basin in the coming decades, which could lead to changes in the composition and concentrations of mineral elements in soils. These changes can have significant impacts on the fundamental processes of plant-soil cycles.
View Article and Find Full Text PDF