Genome-scale metabolic models (GEMs) cover the entire list of metabolic genes in an organism and associated reactions, in a tissue/condition non-specific manner. RNA-seq provides crucial information to make the GEMs condition-specific. Integrative Metabolic Analysis Tool (iMAT) and Integrative Network Inference for Tissues (INIT) are the two most popular algorithms to create condition-specific GEMs from human transcriptome data.
View Article and Find Full Text PDFBackground: Prioritizing candidate drugs based on genome-wide expression data is an emerging approach in systems pharmacology due to its holistic perspective for preclinical drug evaluation. In the current study, a network-based approach was proposed and applied to prioritize plant polyphenols and identify potential drug combinations in breast cancer. We focused on MEK5/ERK5 signalling pathway genes, a recently identified potential drug target in cancer with roles spanning major carcinogenesis processes.
View Article and Find Full Text PDFAlterations in brain metabolism are closely associated with the molecular hallmarks of Parkinson's disease (PD). A clear understanding of the main metabolic perturbations in PD is therefore important. Here, we retrospectively analysed the expression of metabolic genes from 34 PD-control post-mortem human brain transcriptome data comparisons from literature, spanning multiple brain regions.
View Article and Find Full Text PDFBackground: Narrow spectrum of action through limited molecular targets and unforeseen drug-related toxicities have been the main reasons for drug failures at the phase I clinical trials in complex diseases. Most plant-derived compounds with medicinal values possess poly-pharmacologic properties with overall good tolerability, and, thus, are appropriate in the management of complex diseases, especially cancers. However, methodological limitations impede attempts to catalogue targeted processes and infer systemic mechanisms of action.
View Article and Find Full Text PDFHeart attacks have a ripple effect on how other organs exchange biomolecules that help the heart respond to injury.
View Article and Find Full Text PDF